Problem: Let $f_1(x)=\dfrac{x}{e^x-1}, f_2(x)=\dfrac{x}{e^x+1}$. Show that $f_1,f_2$ are Lebesgue-integrable and $\int_{(0,\infty)}f_1 d\lambda=\sum_{n\in\mathbb{N}}\dfrac{1}{n^2}$
$\int_{(0,\infty)}f_2 d\lambda=\sum_{n\in\mathbb{N}}(-1)^{n+1}\dfrac{1}{n^2}$.
My ideas: We were given the hint that $\dfrac{e^{-x}}{1-e^{-x}}=\sum_{n=1}^\infty e^{-nx}$. I see that $f_1(x)=\dfrac{x}{e^x-1}=\dfrac{xe^{-x}}{1-e^{-x}}$ but I don't know how to go from here or how to prove the hint.