There is no fraction of integer numbers $p,q\in\mathbb Z$ such that $\dfrac pq=\sqrt{90}$, however it can be approximated. One method which yields a rapid aproximation are continued fractions in which:
$$\sqrt{90}=a_0+\dfrac{1}{a_1+\dfrac{1}{a_2+\dfrac{1}{a_3+\dfrac{1}{a_4+\dfrac{1}{a_5+\dots}}}}}$$ where you can approximate:
$$C_5=a_0+\dfrac{1}{a_1+\dfrac{1}{a_2+\dfrac{1}{a_3+\dfrac{1}{a_4+\dfrac{1}{a_5}}}}}$$ a rational number.
For finding the appropiate $a_i$ (and $C_i=\dfrac{p_i}{q_i}$) we must first set $a_0=\lfloor\sqrt{90}\rfloor=9$, now:
\begin{align}
\sqrt{90} &= 9 + (\sqrt{90}-9) \\
&= 9 + \frac1{\frac1{\sqrt{90}-9}} \\
&= 9 + \frac1{\frac{\sqrt{90}+9}{(\sqrt{90}-9)(\sqrt{90}+9)}} \\
&= 9 + \frac1{\frac{\sqrt{90}+9}{90-81}} = \frac1{\frac{\sqrt{90}+9}9}\\
&= 9 + \frac1{\frac19\sqrt{90}+1} \\
\end{align}
Where $1<\frac19\sqrt{90}<2$ and, therefor $\lfloor\frac19\sqrt{90}+1\rfloor=2$ so:
\begin{align}
\sqrt{90} &= 9 + \frac1{\frac19\sqrt{90}+1} \\
&= 9 + \frac1{2+(\frac19\sqrt{90}-1)} \\
&= 9 + \dfrac1{2+\dfrac1{\frac1{\frac19\sqrt{90}-1}}} \\
&= 9 + \dfrac1{2+\dfrac1{\frac9{\sqrt{90}-9}}} \\
&= 9 + \dfrac1{2+\dfrac1{\frac{9(\sqrt{90}+9)}{(\sqrt{90}-9)(\sqrt{90}+9)}}} \\
&= 9 + \dfrac1{2+\dfrac1{\frac{9(\sqrt{90}+9)}9}} \\
&= 9 + \dfrac1{2+\dfrac1{\sqrt{90}+9}} \\
&= 9 + \dfrac1{2+\dfrac1{18+(\sqrt{90}-9)}}. \\
\end{align}
Here you can probably see the pattern that:
$$\sqrt{90}=9+\dfrac{1}{2+\dfrac{1}{18+\dfrac{1}{2+\dfrac{1}{18+\dfrac{1}{2+\dots}}}}}.$$
So, the successive approximations will have:
\begin{align}
\sqrt{90} &\simeq 9 \\
&\simeq 9+\dfrac12 = \frac{19}{2} = 9.5 \\
&\simeq 9+\dfrac1{2+\dfrac1{18}} = \frac{351}{37} \simeq9.4864864865 \\
&\simeq 9+\dfrac1{2+\dfrac1{18+\dfrac12}} = \frac{721}{76} \simeq9.4868421053 \\
&\simeq 9+\dfrac1{2+\dfrac1{18+\dfrac1{2+\dfrac1{18}}}} = \frac{13329}{1405} \simeq9.4868327402 \\
&\simeq \frac{27379}{2886}\simeq9.4868329868 \\
&\simeq \frac{506151}{53353}\simeq9.4868329803 \\
&\simeq \frac{1039681}{109592}\simeq9.4868329805
\end{align}
But neither is an exact result. $\sqrt{90}$ does not have an exact result in either a fraction, or a finite decimal representation. (A finite decimal representation is a fraction: $9.486832981=\dfrac{9486832981}{1000000000}$.)