$$\int_0^\pi\int_0^\infty e^{-xy}\sin kx~dy~dx=~?$$ My computation is
$$\int_0^\infty e^{-xy}\sin kx~dx=\frac{1}{k+y^2}$$
so
$$\int_0^\pi\frac{1}{k+y^2}dy=\frac{\sqrt{k}}{k}\arctan\pi$$
$$\int_0^\pi\int_0^\infty e^{-xy}\sin kx~dy~dx=\frac{\sqrt{k}}{k}\arctan\pi$$
Is my result wrong?