Let $\Omega\subset\mathbb{R}^n (n>1)$ be a bounded domain and $0<\alpha<n$. Show, that the kernel function $$ k(x,y):=(\arctan(\lVert x-y\rVert))^{-\alpha}\text{ for }x\neq y $$ can be estimated by a kernel function that is weakly singular, i.e. that $$ \lvert k(x,y)\rvert\leq\frac{\lvert a(x,y)\rvert}{\lVert x-y\rVert^{\alpha}}. $$ for a function $a\in L^{\infty}(\Omega\times\Omega)$.
My idea is to use the mean value theorem. $$ \arctan(\lVert x-y\rVert)=\frac{\lVert x-y\rVert}{1+\xi^2}>\frac{\lVert x-y\rVert}{1+\lVert x-y\rVert^2} $$ for a $\xi\in (0,\lVert x-y\rVert)$.
$$ \Rightarrow \lvert k(x,y)\rvert=\left\lvert\frac{1}{(\arctan(\lVert x-y\rVert))^{\alpha}}\right\rvert=\frac{1}{(\arctan(\lVert x-y\rVert))^{\alpha}}\leq\frac{(1+\lVert x-y\rVert^2)^{\alpha}}{\lVert x-y\rVert^{\alpha}} $$
So I found $$ a(x,y):=(1+\lVert x-y\rVert^2)^{\alpha}, $$ which is to my opinion in $L^{\infty}(\Omega\times\Omega)$, because $$ \lvert a(x,y)\rvert=(1+\lVert x-y\rVert^2)^{\alpha}\leq (1+(2M)^2)^{\alpha}<\infty $$ with $M>\lVert\omega\rVert~\forall~\omega\in\Omega$, because $\Omega$ is bounded.
So $a$ is bounded and then in $L^{\infty}(\Omega\times\Omega)$.
Could you please say me, if my proof resp. estimation is okay?
With greetings
math12