Let $f:X \rightarrow Y$ be a function. Prove that if $f$ is continuous, then for every convergent sequence $(x_n)$ $\displaystyle\lim_{n\rightarrow \infty}f(x_n)=f(\lim_{n \rightarrow \infty} x_n)$
My attempt: Assume $f$ is continuous. Then $\forall \epsilon >0, \exists \delta > 0$ such that $\forall p \in X$ and $q \in X: d(p,q) < \delta \implies d(f(q),f(q)) < \epsilon.$
And also assume that $(x_n)$ converges. Then $\exists L$ such that $\forall \epsilon >0, \exists N$ such that $n>N \implies d(x_n, L) < \epsilon.$
I need to use these definitions to show lim$_{n\rightarrow \infty}\,f(x_n)=f(\text{lim}_{n \rightarrow \infty} \, x_n)$ . Any hints?
Edit: lim$_{n \rightarrow \infty}(x_n) \in X$