Prove with the definition of differentiability that $\exp(z)$ is differentiable in $\mathbb C$ and $(\exp(z))' = \exp(z)$ for all $z \in \mathbb C.$
I tried:
\begin{align*} \frac{\exp(z+h) - \exp(z)}{h} &= \frac{\sum_{k = 0}^\infty \frac{(x+h)^k}{k!} - \sum_{k = 0}^\infty x^k/k!}{h} \\ &= \frac{1}{h} \sum_{k = 0}^\infty \frac{(x+h)^k - x^k}{k!} \\ &= \frac{1}{h} \sum_{k = 0}^\infty \frac{\sum_{j = 0}^k \binom{k}{j} x^{k-j}h^j - x^k}{k!} \\ &= \frac{1}{h} \sum_{k = 0}^\infty \sum_{j = 0}^k\frac{ \frac{k!}{(k-j)! j!} x^{k-j}h^j - x^k}{k!} = \frac{1}{h} \sum_{k = 0}^\infty \sum_{j = 0}^k\frac{x^{k-j}h^j - x^k}{(k-j)! j!}. \end{align*}
I don't know how to go on from here.