Let $f_1,f_2,\ldots, f_n$ be $n$ entire functions, and they don't have any common zero as a whole (not in pairs), then can we assert that there exist $n$ entire functions $g_1,g_2,\ldots,g_n$,such that $F=f_1g_1+f_2g_2+\cdots+f_ng_n$ is zero free? We know that if $f_1,\ldots,f_n$ are known to be polynomials, the conclusion follows from Bezout equation and induction. But things become complicated when infinite products get involved.
(The original formulation of this problem is: Each finitely generated ideal in the ring of entire functions must be principal, which evidently can be reduced to the problem above.)