$\forall a,b \in \Bbb N, a\land b = \operatorname{gcd}(a,b)$
Let $f(n)=\max\Big\{k\in \Bbb N\,\Big|\, 2^k \mid n\Big\}=\#\Big\{k\in \Bbb N^*\,\Big|\, 2^k \mid n\Big\}$. What properties does this function have?
-
$\forall a,b \in \Bbb N, f(ab)=?$
-
$\forall a,b \in \Bbb N, f(ab)=f(a)+f(b)$
-
$\forall m\in \Bbb N, \forall a_1,\dots,a_m \in \Bbb N, f\left(\prod\limits_{i=1}^na_i\right)=?$
-
$\forall m\in \Bbb N, \forall a_1,\dots,a_m \in \Bbb N, f\left(\prod\limits_{i=1}^na_i\right)=\sum\limits_{i=1}^nf(a_i)$
-
$\forall a,b \in \Bbb N, f(a\land b)=?$
-
$\forall a,b \in \Bbb N, f(a\land b)=\min(f(a), f(b))$
-
$f(50!\land 2^{50})=?$
-
$f(50!\land 2^{50})=\min(f(50!),f(2^{50}))=\min\left(\sum\limits_{i=2}^{50}f(i),50\right)$
-
$\sum\limits_{i=2}^{50}f(i)=\sum\limits_{i=2}^{50}\#\Big\{k\in \Bbb N^*\,\Big|\, 2^k \mid i\Big\}=\sum\limits_{j=1}^{+\infty}\#\Big\{i\in \Bbb N, 2\le i\le 50\,\Big|\, 2^j \mid i\Big\}=\sum\limits_{j=1}^{+\infty}\left\lfloor\cfrac{50}{2^j}\right\rfloor$ Imagine the real axis and place the natural number on it. Now, over each natural number, pile up square boxes, one per $i$ so that $2^i$ divides your number. The left sum is counting the boxes column by column while the right sum is counting them line by line.