Let $f_1,f_2,\ldots,g\colon\mathbb{Z}\rightarrow\mathbb{R}$ be functions such that $|f_N(n)|\leq g(n)$, $\sum_{n=-\infty}^\infty g(n)<\infty$, and $\lim_{N\rightarrow\infty}f_N(n)=f(n)$. Then show that $$\lim_{N\rightarrow\infty}\sum_{n=-\infty}^\infty f_N(n)=\sum_{n=-\infty}^\infty f(n).$$
This looks like the dominated convergence theorem, but how can we prove it directly?
Edit: As T. Bongers helpfully pointed out, this can be shown using the dominated convergence theorem. Is there a direct way to do it without the theorem?