Let p be an odd prime and k a positive integer. Show that the congruence $x^{2}$ $\equiv 1 \ mod p^{k}$ has exactly two incongruence solutions, namely, $x \equiv \pm 1\mod p^{k}$.
I'm not sure what to do after this: $x^{2}$ $\equiv 1 \ mod p^{k}$ => $p^{k}$ | $x^{2}-1$=(x-1)(x+2)