I am trying to prove that Given $\mathbb{R}$ as a vector space over $\mathbb{Q}$, and a basis for $\mathbb{R}$, then $|B|=2^{\aleph_0}$.
Proof: Suppse that $|B|<2^{\aleph_0}$, then $\mathbb R = span\{ b_i ; b_i \in B \}$ So $ \mathbb R = \{ \Sigma_{i=1}^{\infty}\alpha_i b_i ; \alpha_i \in \mathbb Q, b_i \in B, i \in \mathbb N \} = \bigcup_{n=1}^{\infty}\{\Sigma_{i=1}^n \alpha_ib_i\}$. Which is a contradiction since a countable union of countable union of countable sets is countable and $\mathbb R$ is not.
What do you think?
Thank you, Shir