We wish to find $a$ and $b$ such that $241\times a + 114\times b = GCD(241,114)$. Using Extended Euclidean algorithm, we first find the GCD by recursively applying $GCD(a,b) = GCD(b, a\bmod b)$.
We can form the following equations to obtain $GCD(241, 114)$:
$$\begin{align*}
241 =& 114\times 2 + \color{red}{13}&
241 \bmod114 =& \color{red}{13}\\
114 =& \color{red}{13}\times 8 + \color{orange}{10}&
114 \bmod \color{red}{13} =& \color{orange}{10}\\
\color{red}{13} =& \color{orange}{10}\times1 + \color{green}{3}&
\color{red}{13} \bmod \color{orange}{10} =& \color{green}{3}\\
\color{orange}{10} =& \color{green}{3}\times3 + \color{blue}{1}&
\color{orange}{10}\bmod \color{green}{3} =&\color{blue}{1}\\
\end{align*}$$
The above is the first step, the "original" Euclidean algorithm. $GCD(241,114)$ is now obtained to be $1$. The extended part is as follows to find $a$ and $b$. Starting from the last equation above:
$$\begin{align*}
\color{blue}{1} =& \color{orange}{10} - \color{green}{3}\times3\\
=& \color{orange}{10} - (\color{red}{13} - \color{orange}{10}\times1)\times3\\
=& \color{red}{13}\times(-3) + \color{orange}{10} \times 4\\
=& \color{red}{13}\times(-3) + (114 - \color{red}{13}\times 8) \times 4\\
=& 114\times4 + \color{red}{13}\times(-35)\\
=& 114\times4 + (241-114\times2)\times(-35)\\
\color{blue}{1}=& 241\times(-35) + 114\times74 &(1)
\end{align*}$$
The above involves alternate substituting remainders and grouping remainder terms. That gave $a=-35$ and $b=74$ as one solution.
Since $GCD(241, 114) = 1$, we know $LCM(241,114) = 241\times114$, and so
$$\begin{align*}
241 \times \frac{LCM(241,114)}{241} =& 114 \times\frac{LCM(241,114)}{114}\\
241 \times 114 =& 114 \times241\\
0 =& 241 \times 114 + 114 \times(-241) &(2)
\end{align*}$$
The reason for me to write this trivial equation out is that, you can add $k$ times of equation $(2)$ to $(1)$, and the sum would still be $1$. Therefore, in general
$$a = 114k - 35,\ b=-241k + 74$$
Your solution from WolframAlpha is off by one solution: $n=k-1$