let $\theta\in R$,and $\alpha\neq\beta\neq\gamma$ and such $$\dfrac{\cos{(\alpha+\theta)}}{\sin^3{\alpha}}=\dfrac{\cos{(\beta+\theta)}}{\sin^3{\beta}}=\dfrac{\cos{(\gamma+\theta)}}{\sin^3{\gamma}}$$
prove $$\alpha+\beta+\gamma=n\pi$$
My try: let $$\dfrac{\cos{(\alpha+\theta)}}{\sin^3{\alpha}}=\dfrac{\cos{(\beta+\theta)}}{\sin^3{\beta}}=\dfrac{\cos{(\gamma+\theta)}}{\sin^3{\gamma}}=k$$ then $$\cos{(\alpha+\theta)}=k\sin^3{\alpha},\quad \cos{(\beta+\theta)}=k\sin^3{\beta},\quad\cos{(\gamma+\theta)}=k\sin^3{\gamma}$$ so $$\cos{(\alpha-\beta)}=\cos{[(\alpha+\theta)-(\beta+\theta)]}=\cos{(\alpha+\theta)}\cos{(\beta+\theta)}+\sin{(\alpha+\theta)}\sin{(\beta+\theta)}$$ and follow maybe can't work.Thank you