$ \sqrt{8+2\sqrt{10+2\sqrt{5}}} - \sqrt{8-2\sqrt{10+2\sqrt{5}}} $
I have tried to raising it to the square, but I can't obtain the result.
$ \sqrt{8+2\sqrt{10+2\sqrt{5}}} - \sqrt{8-2\sqrt{10+2\sqrt{5}}}= k $
$ 2\sqrt{10+2\sqrt{5}} -2\sqrt{10+2\sqrt{5}} = k^2 $
$2(\sqrt{(10+2\sqrt{5})(10-2\sqrt{5}})=2\sqrt{80}=8\sqrt{5}=k^2$
Is this a good lead?
@EDIT one more thing, how to show that $ \sqrt{8+2\sqrt{10+2\sqrt{5}}} + \sqrt{8-2\sqrt{10+2\sqrt{5}}} $ equals to $\sqrt{10}+\sqrt{2}$
$$8+2\sqrt{10+2\sqrt5}=8(1+\cos18^\circ)=16\cos^29^\circ$$
– lab bhattacharjee Nov 25 '13 at 17:17