Too long for comment
,Define the generalized Ahmed integral $$I\left( p,q,r \right) = pqr \int_0^1{\frac{\arctan \left( q\sqrt{p^2u^2+1} \right)}{q\sqrt{p^2u^2+1}}\frac{1}{\left( p^2\left( r^2+1 \right) u^2+1 \right)}}\,du
$$
$
1 \text{, when } p,q,r>0, \, pqr\le 1 \text{, then: }
$
$$
\begin{aligned}
&I\left( p,q,r \right) = pqr\int_0^1{\frac{\arctan \left( q\sqrt{p^2u^2+1} \right)}{q\sqrt{p^2u^2+1}}\frac{1}{\left( p^2\left( r^2+1 \right) u^2+1 \right)}}\,du \\
&=A\left( p,q,r \right) -\arctan \left( \frac{pq}{\sqrt{q^2+1}} \right) \arctan \left( r\sqrt{q^2+1} \right) \\
&A\left( p,q,r \right) =2\sum_{k=0}^{\infty}{\frac{\left( pqr \right) ^{2k+1}}{\left( 2k+1 \right) ^2}}+ \\
&\frac{pqr}{2}\int_0^1{\frac{\ln \left( \frac{1+\left( r\sqrt{q^2+1} \right) ^2x^2}{1+\left( r\sqrt{q^2+1} \right) ^2} \right) +\ln \left( \frac{1+\left( p\sqrt{r^2+1} \right) ^2x^2}{1+\left( p\sqrt{r^2+1} \right) ^2} \right) +\ln \left( \frac{1+\left( q\sqrt{p^2+1} \right) ^2x^2}{1+\left( q\sqrt{p^2+1} \right) ^2} \right)}{1-\left( pqr \right) ^2x^2}dx}
\end{aligned}
$$
$
2 \text{, for any } p,q,r>0, \text{ then: }
$
$$
\begin{aligned}
&I\left( p,q,r \right) = pqr\int_0^1{\frac{\arctan \left( q\sqrt{p^2u^2+1} \right)}{q\sqrt{p^2u^2+1}}\frac{1}{\left( p^2\left( r^2+1 \right) u^2+1 \right)}}\,du \\
&=\hat{A}\left( p,q,r \right) -\arctan \left( \frac{pq}{\sqrt{q^2+1}} \right) \arctan \left( r\sqrt{q^2+1} \right) \\
&\hat{A}\left( p,q,r \right) =\frac{\pi ^2}{4}+2\sum_{k=0}^{\infty}{\frac{\left( \frac{pqr-1}{pqr+1} \right) ^{2k+1}}{\left( 2k+1 \right) ^2}}+ \\
&\frac{pqr}{2}\int_0^1{\frac{\ln \left( \frac{1+\left( r\sqrt{q^2+1} \right) ^2x^2}{1+\left( r\sqrt{q^2+1} \right) ^2}\frac{1+\left( p\sqrt{r^2+1} \right) ^2x^2}{1+\left( p\sqrt{r^2+1} \right) ^2}\frac{1+\left( q\sqrt{p^2+1} \right) ^2x^2}{1+\left( q\sqrt{p^2+1} \right) ^2} \right) +4\ln \left( pqr \right)}{1-\left( pqr \right) ^2x^2}dx}
\end{aligned}
$$
For this problem, note that
$$
I\left( p,q,r \right) =\int_0^1{\frac{\arctan \left( q\sqrt{p^2u^2+1} \right)}{q\sqrt{p^2u^2+1}}\frac{1}{\left( p^2\left( r^2+1 \right) u^2+1 \right)}du}=\int_0^1{\frac{\arctan \left( \frac{2\sqrt{2u^2+1}}{\sqrt{5}\left( u^2+1 \right)} \right)}{\sqrt{2u^2+1}\left( 3u^2+1 \right)}du}, \\
\text{using the addition formula for } \arctan \left( x \right): \arctan \left( \frac{2\sqrt{2u^2+1}}{\sqrt{5}\left( u^2+1 \right)} \right) \\
=\arctan \left( \sqrt{5}\sqrt{2u^2+1} \right) -\arctan \left( \frac{\sqrt{2u^2+1}}{\sqrt{5}} \right) \text{; so } I=\int_0^1{\frac{\arctan \left( \sqrt{5}\sqrt{2u^2+1} \right) -\arctan \left( \frac{\sqrt{2u^2+1}}{\sqrt{5}} \right)}{\sqrt{2u^2+1}\left( 3u^2+1 \right)}du} \\
=I\left( \sqrt{2},\sqrt{5},\frac{1}{\sqrt{2}} \right) -I\left( \sqrt{2},\frac{1}{\sqrt{5}},\frac{1}{\sqrt{2}} \right)
$$
where
$$I\left( \sqrt{2},\sqrt{5},\frac{1}{\sqrt{2}} \right) = 2\sum_{k=0}^{\infty}{\frac{\left( \frac{\sqrt{5}-1}{\sqrt{5}+1} \right) ^{2k+1}}{\left( 2k+1 \right) ^2}}+ \\
\int_0^1{\frac{\sqrt{5}\left( \ln \left( \frac{\left( \frac{\sqrt{\sqrt{5}^2+1}x}{\sqrt{2}} \right) ^2+1}{\left( \frac{\sqrt{\sqrt{5}^2+1}}{\sqrt{2}} \right) ^2+1}\frac{\left( \frac{\sqrt{\sqrt{2}^2+1}x}{\frac{1}{\sqrt{5}}} \right) ^2+1}{\left( \frac{\sqrt{\sqrt{2}^2+1}}{\frac{1}{\sqrt{5}}} \right) ^2+1}\frac{\left( \sqrt{2}\sqrt{\left( \frac{1}{\sqrt{2}} \right) ^2+1}x \right) ^2+1}{\left( \sqrt{2}\sqrt{\left( \frac{1}{\sqrt{2}} \right) ^2+1} \right) ^2+1} \right) +4\ln \left( \sqrt{5} \right) \right)}{2\left( 1-\left( \sqrt{5}x \right) ^2 \right)}}\,dx+ \\
\frac{\pi ^2}{4}-\arctan \left( \frac{\sqrt{\sqrt{5}^2+1}}{\sqrt{2}} \right) \arctan \left( \frac{\sqrt{2}\sqrt{5}}{\sqrt{\sqrt{5}^2+1}} \right) \\
=\frac{2\left( \frac{1}{2}\sqrt{5}\ln\left(1+\sqrt{2}\right) -\frac{1}{2}\sqrt{5}\ln\left(1-\sqrt{2}\right) \right)}{\sqrt{5}}+ \\
\int_0^1{\frac{\sqrt{5}\left( 2\ln \left( 3x^2+1 \right) +\ln \left( \frac{25}{256}\left( 15x^2+1 \right) \right) \right)}{2\left( 1-\left( \sqrt{5}x \right) ^2 \right)}}\,dx \\
+\frac{1}{12}\pi \left( 3\pi -4\arctan \left( \sqrt{\frac{5}{3}} \right) \right);
$$
Similarly, we get
$$I\left( \sqrt{2},\frac{1}{\sqrt{5}},\frac{1}{\sqrt{2}} \right) =2\sum_{k=0}^{\infty}{\frac{\left( \frac{1}{\sqrt{5}} \right) ^{2k+1}}{\left( 2k+1 \right) ^2}}+ \\
\int_0^1{\frac{2\ln \left( \frac{5}{8}\left( \frac{3x^2}{5}+1 \right) \right) +\ln \left( \frac{1}{4}\left( 3x^2+1 \right) \right)}{2\sqrt{5}\left( 1-\frac{x^2}{5} \right)}}\,dx-\arctan \left( \frac{\sqrt{2}}{\sqrt{5}\sqrt{\left( \frac{1}{\sqrt{5}} \right) ^2+1}} \right) \arctan \left( \frac{\sqrt{\left( \frac{1}{\sqrt{5}} \right) ^2+1}}{\sqrt{2}} \right) \\
=\frac{2\left( \frac{1}{2}\sqrt{5}\ln\left(1+\sqrt{\frac{5}{2}}\right) -\frac{1}{2}\sqrt{5}\ln\left(1-\sqrt{\frac{5}{2}}\right) \right)}{\sqrt{5}}+ \\
\int_0^1{\frac{2\ln \left( \frac{5}{8}\left( \frac{3x^2}{5}+1 \right) \right) +\ln \left( \frac{1}{4}\left( 3x^2+1 \right) \right)}{2\sqrt{5}\left( 1-\frac{x^2}{5} \right)}}\,dx-\frac{1}{6}\pi \tan ^{-1}\left( \sqrt{\frac{3}{5}} \right);
$$
Then the integral is given by
$$
\int_0^1{\frac{2\ln \left( \frac{5}{8}\left( \frac{3x^2}{5}+1 \right) \right) +\ln \left( \frac{1}{4}\left( 3x^2+1 \right) \right)}{2\sqrt{5}\left( 1-\frac{x^2}{5} \right)}dx}, \\
\int_0^1{\frac{\sqrt{5}\left( 2\ln \left( 3x^2+1 \right) +\ln \left( \frac{25}{256}\left( 15x^2+1 \right) \right) \right)}{2\left( 1-\left( \sqrt{5}x \right) ^2 \right)}}\,dx
$$
an be computed accordingly
Regarding Sangchul Lee's paper "Some properties on generalized Ahmed's integral," two corrections are made (as amended in this document)
(1) Formula (1,3) $$\arctan \left( \frac{pq}{\sqrt{q^2+1}} \right) \arctan \left( r\sqrt{p^2+1} \right)$ should be corrected to $\arctan \left( \frac{pq}{\sqrt{q^2+1}} \right) \arctan \left( r\sqrt{q^2+1} \right)$$
(2) In formula (1,4), $$\chi_2(z)=\sum_{k=0}^{\infty}{\frac{\left(z \right) ^{2k+1}}{\left( 2k+1 \right) ^2}}$$, the subscript should start from 0