I have to prove that $a_n$ is (strictly) increasing and diverges
$a_n = \sqrt[n]{n!}$ ; n $\in$ $\ \mathbb{N}$
From sequence I see that $a_n$ increasing to infinitive.
$\sqrt[1]{1!}=1 ,\ \sqrt[2]{2!} \approx 1.41, \ \sqrt[3]{3!} \approx 1.81 ,..., \sqrt[n]{n!} $