$$\int_0^\pi\int_\phi^\pi\dfrac{(1+r\cos\psi)^{\ell+1}}{(1+r\cos\phi)^\ell}d\psi~d\phi$$
$$=\int_0^\pi\int_\phi^\pi\sum\limits_{m=0}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{C_{2m}^{\ell+1}r^{2m}\cos^{2m}\psi}{(1+r\cos\phi)^\ell}d\psi~d\phi+\int_0^\pi\int_\phi^\pi\sum\limits_{m=0}^{\left\lceil\frac{\ell+1}{2}\right\rceil}\dfrac{C_{2m+1}^{\ell+1}r^{2m+1}\cos^{2m+1}\psi}{(1+r\cos\phi)^\ell}d\psi~d\phi$$
$$=\int_0^\pi\int_\phi^\pi\dfrac{1}{(1+r\cos\phi)^\ell}d\psi~d\phi+\int_0^\pi\int_\phi^\pi\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{(\ell+1)!r^{2m}\cos^{2m}\psi}{(2m)!(\ell-2m+1)!(1+r\cos\phi)^\ell}d\psi~d\phi\\+\int_0^\pi\int_\phi^\pi\sum\limits_{m=0}^{\left\lceil\frac{\ell+1}{2}\right\rceil}\dfrac{(\ell+1)!r^{2m+1}\cos^{2m+1}\psi}{(2m+1)!(\ell-2m)!(1+r\cos\phi)^\ell}d\psi~d\phi$$
For $\int\cos^{2m}\psi~d\psi$ , where $m$ is any natural number,
$$\int\cos^{2m}\psi~d\psi=\dfrac{(2m)!\psi}{4^m(m!)^2}+\sum\limits_{n=1}^m\dfrac{(2m)!((n-1)!)^2\sin\psi~\cos^{2n-1}\psi}{4^{m-n+1}(m!)^2(2n-1)!}+C$$
This result can be done by successive integration by parts, e.g. as shown as http://hk.knowledge.yahoo.com/question/question?qid=7012022000808
For $\int\cos^{2m+1}\psi~d\psi$ , where $m$ is any non-negative integer,
$$\int\cos^{2m+1}\psi~d\psi$$
$$=\int\cos^{2m}\psi~d(\sin\psi)$$
$$=\int(1-\sin^2\psi)^m~d(\sin\psi)$$
$$=\int\sum\limits_{n=0}^mC_n^m(-1)^n\sin^{2n}\psi~d(\sin\psi)$$
$$=\sum\limits_{n=0}^m\dfrac{(-1)^nm!\sin^{2n+1}\psi}{n!(m-n)!(2n+1)}+C$$
$$\therefore\int_0^\pi\int_\phi^\pi\dfrac{1}{(1+r\cos\phi)^\ell}d\psi~d\phi+\int_0^\pi\int_\phi^\pi\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{(\ell+1)!r^{2m}\cos^{2m}\psi}{(2m)!(\ell-2m+1)!(1+r\cos\phi)^\ell}d\psi~d\phi+\int_0^\pi\int_\phi^\pi\sum\limits_{m=0}^{\left\lceil\frac{\ell+1}{2}\right\rceil}\dfrac{(\ell+1)!r^{2m+1}\cos^{2m+1}\psi}{(2m+1)!(\ell-2m)!(1+r\cos\phi)^\ell}d\psi~d\phi$$
$$=\int_0^\pi\biggl[\dfrac{\psi}{(1+r\cos\phi)^\ell}\biggr]_\phi^\pi~d\phi+\int_0^\pi\biggl[\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{(\ell+1)!r^{2m}\psi}{4^m(m!)^2(\ell-2m+1)!(1+r\cos\phi)^\ell}\biggr]_\phi^\pi~d\phi+\int_0^\pi\biggl[\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m}\sin\psi~\cos^{2n-1}\psi}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+r\cos\phi)^\ell}\biggr]_\phi^\pi~d\phi+\int_0^\pi\biggl[\sum\limits_{m=0}^{\left\lceil\frac{\ell+1}{2}\right\rceil}\sum\limits_{n=0}^m\dfrac{(-1)^n(\ell+1)!m!r^{2m+1}\sin^{2n+1}\psi}{(2m+1)!(\ell-2m)!n!(m-n)!(2n+1)(1+r\cos\phi)^\ell}\biggr]_\phi^\pi~d\phi$$
$$=\int_0^\pi\sum\limits_{m=0}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{(\ell+1)!r^{2m}(\pi-\phi)}{4^m(m!)^2(\ell-2m+1)!(1+r\cos\phi)^\ell}d\phi-$$
$$\int_0^\pi\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m}\sin\phi~\cos^{2n-1}\phi}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+r\cos\phi)^\ell}d\phi-$$
$$\int_0^\pi\sum\limits_{m=0}^{\left\lceil\frac{\ell+1}{2}\right\rceil}\sum\limits_{n=0}^m\dfrac{(-1)^n(\ell+1)!m!r^{2m+1}\sin^{2n+1}\phi}{(2m+1)!(\ell-2m)!n!(m-n)!(2n+1)(1+r\cos\phi)^\ell}d\phi$$
$$=\int_0^\pi\sum\limits_{m=0}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{(\ell+1)!r^{2m}\phi}{4^m(m!)^2(\ell-2m+1)!(1-r\cos\phi)^\ell}d\phi-$$
$$\int_0^\pi\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m}\sin\phi~\cos^{2n-1}\phi}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+r\cos\phi)^\ell}d\phi-$$
$$\int_0^\pi\sum\limits_{m=0}^{\left\lceil\frac{\ell+1}{2}\right\rceil}\sum\limits_{n=0}^m\dfrac{(-1)^n(\ell+1)!m!r^{2m+1}\sin^{2n+1}\phi}{(2m+1)!(\ell-2m)!n!(m-n)!(2n+1)(1+r\cos\phi)^\ell}d\phi$$
For $\int_0^\pi\sum\limits_{m=0}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{(\ell+1)!r^{2m}\phi}{4^m(m!)^2(\ell-2m+1)!(1-r\cos\phi)^\ell}d\phi$ , please refer to Closed form for integral $\int_{0}^{\pi} \left[1 - r \cos\left(\phi\right)\right]^{-n} \phi \,{\rm d}\phi$.
For $\int_0^\pi\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m}\sin\phi~\cos^{2n-1}\phi}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+r\cos\phi)^\ell}d\phi$ ,
$$\int_0^\pi\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m}\sin\phi~\cos^{2n-1}\phi}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+r\cos\phi)^\ell}d\phi$$
$$=-\int_0^\pi\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m}\cos^{2n-1}\phi}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+r\cos\phi)^\ell}d(\cos\phi)$$
$$=\int_{-1}^1\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m}u^{2n-1}}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+ru)^\ell}du$$
$$=\int_{-1}^1\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\dfrac{(\ell+1)!((n-1)!)^2r^{2m-2n+1}(1+ru-1)^{2n-1}}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+ru)^\ell}du$$
$$=\int_{-1}^1\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\sum\limits_{k=0}^{2n-1}\dfrac{(\ell+1)!((n-1)!)^2r^{2m-2n+1}C_k^{2n-1}(-1)^{2n-k-1}(1+ru)^k}{4^{m-n+1}(m!)^2(\ell-2m+1)!(2n-1)!(1+ru)^\ell}du$$
$$=\int_{-1}^1\sum\limits_{m=1}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\sum\limits_{n=1}^m\sum\limits_{k=0}^{2n-1}\dfrac{(-1)^{k-1}(\ell+1)!((n-1)!)^2r^{2m-2n+1}(1+ru)^{k-\ell}}{4^{m-n+1}(m!)^2(\ell-2m+1)!k!(2n-k-1)!}du$$
which should have closed form solution
so does for $\int_0^\pi\sum\limits_{m=0}^{\left\lceil\frac{\ell+1}{2}\right\rceil}\sum\limits_{n=0}^m\dfrac{(-1)^n(\ell+1)!m!r^{2m+1}\sin^{2n+1}\phi}{(2m+1)!(\ell-2m)!n!(m-n)!(2n+1)(1+r\cos\phi)^\ell}d\phi$
In fact this approach works well for small $\ell$ but may not work well for large $\ell$ , even we clearly know that all terms excluding for $\int_0^\pi\sum\limits_{m=0}^{\left\lfloor\frac{\ell+1}{2}\right\rfloor}\dfrac{(\ell+1)!r^{2m}\phi}{4^m(m!)^2(\ell-2m+1)!(1-r\cos\phi)^\ell}d\phi$ should have closed form solution.