In 1987, R. Paris proved that the nested radical expression for $\phi$,
$$\phi=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$
approaches $\phi$ at a constant rate. For example, defining $\phi_n$ as using $n = 5, 6, 7$ "ones" respectively, then,
$$(1/2)(\phi-\phi_5)(2\phi)^5 = 1.0977\dots$$
$$(1/2)(\phi-\phi_6)(2\phi)^6 = 1.0983\dots$$
$$(1/2)(\phi-\phi_7)(2\phi)^7 = 1.0985\dots$$
which is approaching the Paris constant $R = 1.09864196\dots$. It seems it can be generalized. Define,
$$x_n=\sqrt[k]{1+\sqrt[k]{1+\sqrt[k]{1+\sqrt[k]{1_n+\dots}}}}\tag{1}$$
for integer $k>1$ and the equations,
$$x^k = x+1\tag{2}$$
$$y = \frac{1}{x}+1\tag{3}$$
where $x$ is the root of $(2)$ such that $x = x_n$ as $n \to \infty$ in $(1)$. Then one can conjecture that,
$$\lim_{n\to\infty}(1/2)(x-x_n)(ky)^n = C_k\tag{4}$$
for some constant $C_k$. The Paris constant is simply the case $C_2$.
I tested it for increasing large $k$. The sequence of $C_k$ seem to be themselves approaching a constant. The rate is very slow, so for much higher $k = 10^{14},10^{15},10^{16}$,
$$C_{10^{14}} = 0.6931471805599500\dots$$
$$C_{10^{15}} = 0.6931471805599457\dots$$
$$C_{10^{16}} = 0.6931471805599454\dots$$
Compare to,
$$\ln 2 = 0.6931471805599453\dots$$
Question:
- Does $C_k \to \ln 2$, as $k \to \infty$?
$\color{blue}{Edit,\; Nov.\;25}$
More generally, define,
$$x_n=\sqrt[k]{a+\sqrt[k]{a+\sqrt[k]{a+\sqrt[k]{a_n+\dots}}}}\tag{5}$$
for integers $a\ge 1,\;k>1$ and,
$$x^k = x+a\tag{6}$$
$$y = \frac{a}{x}+1\tag{7}$$
Then it seems,
$$\lim_{n\to\infty}(1/2)(x-x_n)(ky)^n = C_{a,k}\tag{8}$$
The Paris constant is the case $C_{1,2}$. Is it true that as $k \to \infty$, then,
$$\lim_{k\to \infty} C_{1,k} = \ln 2$$
$$\lim_{k\to \infty} C_{2,k} = \tfrac{3}{2} \ln \tfrac{3}{2}$$
$$\lim_{k\to \infty} C_{3,k} = \tfrac{4}{2} \ln \tfrac{4}{3}$$
$$\lim_{k\to \infty} C_{4,k} = \tfrac{5}{2} \ln \tfrac{5}{4}$$
and so on?
P.S. The only known closed-form in terms of transcendental constants is $C_{2,2} = \pi^2/8$.