We will show that $$\lim\limits_{n \rightarrow \infty}{\frac{a_{n+1}}{a_n}}=\lim_{n\to \infty} \sqrt[n] {a_n}$$.(Because the limits exist).
First we will show that $$\lim\limits_{n \rightarrow \infty}{\frac{a_{n+1}}{a_n}}=L\geq \lim_{n\to \infty} \sqrt[n] {a_n}$$.
Let $ε>0$ then there is a $n_1\in \Bbb N:\frac {a_{n+1}}{a_n}\leq L+\frac {ε}{2}$ for every $n\geq n_1$.
Now write $$a_n=\frac {a_n}{a_{n-1}}\cdot \frac {a_{n-1}}{a_{n-2}}\cdot ...\frac {a_{n_1+1}}{a_{n_1}}\cdot a_{n_1}$$. Thus we have that $$a_n\leq \frac {a_{n_1}}{(L+\frac {ε}{2})^{n_1}}\cdot (L+\frac {ε}{2})^n$$.
Let now $$θ=\frac {a_{n_1}}{(L+\frac {ε}{2})^{n_1}}$$ and by using that $\sqrt[n] {θ}\to 0$ we have that there is a $n_0\geq n_1:\sqrt [n] {a_n}\leq \sqrt[n] {θ}\cdot (L+\frac {ε}{2})<L+ε$ for every $n\geq n_0$ and thus $$\lim_{n\to \infty} \sqrt[n] {a_n}\leq L$$.
Same you do to prove $$\lim_{n\to \infty} \sqrt[n] {a_n}\geq L$$.