let sequence $\{F_{n}\}$ such $$F_{1}=1,F_{2}=1,F_{m+1}=F_{m}+F_{m-1},m\ge 2$$
Find this value
$$I=\sum_{k=0}^{\infty}\dfrac{1}{F_{2^k}}$$
My try: I know this
$$F_{n}=\dfrac{1}{\sqrt{5}}\left(\left(\dfrac{\sqrt{5}+1}{2}\right)^n-\left(\dfrac{\sqrt{5}-1}{2}\right)^n\right)$$
so
$$\dfrac{1}{F_{2^k}}=\dfrac{\sqrt{5}}{\left(\dfrac{\sqrt{5}+1}{2}\right)^{2^k}-\left(\dfrac{\sqrt{5}-1}{2}\right)^{2^k}}$$ so we only find this sum $$I=\sum_{k=0}^{\infty}\dfrac{\sqrt{5}}{\left(\dfrac{\sqrt{5}+1}{2}\right)^{2^k}-\left(\dfrac{\sqrt{5}-1}{2}\right)^{2^k}}$$
But I can't.Thank you