"let $ a,b \in \mathbb{R}$ and $t \subseteq \mathbb{R}$
$a \equiv b (mod. 2\pi)$ if $\exists k \in \mathbb{Z}(a-b=2k\pi)$
this congruence is equivalence relation, therefore:
$[a]_\sim=\{x|x=a+2k\pi \wedge k \in \mathbb{Z}\}$
$t$ is angle if $t \in \mathbb{R} / \sim$
but, let $\vec{v}\neq\vec{0},\vec{w}\neq \vec{0}$ and $\vec{v},\vec{w} \in \mathbb{R}^2$ (and $\mathbb{R}^2$ is Euclidean plane), How do I define the angle between $\vec{v}$ and $\vec{w}$?
Thanks in advance!!