3

prove that $$(\frac{n}{3})^n<n!<e\cdot(\frac{n}{2})^n$$

I tried to prove by the induction that $(\frac{n}{3})^n<n!$ and $n!<e\cdot(\frac{n}{2})^n$, but I failed

my assumption $n^n<n!*3^n$

$$(n+1)^{n+1}<(n+1)*3^{n+1}$$ $$\frac{(n+1)^n}{9}<n!*3^{n-1}$$

Kran
  • 1,039

0 Answers0