prove that $$(\frac{n}{3})^n<n!<e\cdot(\frac{n}{2})^n$$
I tried to prove by the induction that $(\frac{n}{3})^n<n!$ and $n!<e\cdot(\frac{n}{2})^n$, but I failed
my assumption $n^n<n!*3^n$
$$(n+1)^{n+1}<(n+1)*3^{n+1}$$ $$\frac{(n+1)^n}{9}<n!*3^{n-1}$$