Let $f: A \rightarrow B$, $D \subseteq A$, and $E \subseteq B$. Prove that $f^{-1}(B - E) \subseteq A - f^{-1}(E)$
Proof: Let $x \in f^{-1}(B-E)$, then $x \in f^{-1}(B)$ and $x \notin f^{-1}(E)$... ...
I know I want to show that $x \in A - f^{-1}(E)$, but how can I show that $x \in A$?