Using this, if ord$\displaystyle _{(p^k)}a = d$ where k is a natural number and $p$ odd prime,
we can show that ord$_{(p^{k+1})}a = d$ or $pd$
Now, $\displaystyle 2^2\equiv-1\pmod5\implies 2^4\equiv1\pmod5\implies$ord$_52=4$
$\displaystyle\implies$ord$_{(5^2)}2=4$ or $4\cdot5=20$ which $=\phi(25)$
Now, $\displaystyle2^4=16\not\equiv1\pmod{25}\implies$ ord$_{(5^2)}2=20$
So, $2$ is a primitive root of $25$
using this, $2$ is a primitive root of $5^k$ for integer $k\ge1$
$\displaystyle\implies2^{4\cdot5^k}\equiv1\pmod{5^{k+1}}\equiv1+c\cdot5^{k+1}\pmod{5^r}$ for integer $r\ge k+1$
where $c$ is some integer not divisible by $5$ as $\displaystyle2^{4\cdot5^k}\not\equiv1\pmod{5^r}$ where $r\ge k+1$