Suppose $a, b$ and $n$ are positive integers. Prove that $a^n\mid b^n$ if and only if $a \mid b$.
I have:
$$a^n\mid b^n$$
$$\implies b^n = a^n \cdot k$$
$$\implies \sqrt[n]{b^n}=\sqrt[n]{a^n}\cdot k$$
$$\implies a=b\cdot k$$
$$\implies a\mid b$$
Is it really this simple?