By Euler's formulas,
$$
\sin \theta = \frac{e^{i\theta}-e^{-i\theta}}{2i}, \quad\text{so}\quad
(\sin \theta)^{2n} = \left(\frac{e^{i\theta}-e^{-i\theta}}{2i}\right)^{\!\!2n}.
$$
Put $z = e^{i\theta}$ (so $dz = ie^{i\theta}\,d\theta = iz\,d\theta$) which maps the interval $[0,2\pi]$ onto the unit circle $C$. Hence your integral is
\begin{align}
\int_0^{2\pi} (\sin \theta)^{2n}\,d\theta &= \int_C \left( \frac{z - \frac1z}{2i} \right)^{\!\!2n}\,\frac{dz}{iz} \\
&= \int_C \frac{(z^2-1)^{2n}}{2^{2n}z^{2n+1} i^{2n+1}}\,dz.
\end{align}
Expand the numerator using the binomial theorem and divide through by $z^{2n+1}$. All the resulting terms will give a vanishing integral, expect the middle one (corresponding to the $z^{-1}$-term). Alternatively, refer to the residue theorem which amounts to the same thing. You will then end up with $2\pi i$ times the coefficient of $z^{-1}$, i.e.
$$
2\pi i \cdot \dfrac{(-1)^n \binom{2n}{n}}{2^{2n} i^{2n+1}} = \frac{2\pi\binom{2n}{n}}{4^n}
$$
as required.