I'm stuck with this one - Any tips?
The Problem:
Let $n \in \mathbb{N}.$ The following $n \times n$ matrix:
$$A = \left( \begin{array}{ccc} 2 & 1 & & & & ...\\ 1 & 2 & 1 & & & ...\\ & 1 & 2 & 1 & & ...\\ & & 1 & 2 & 1 & ...\\ & & & 1 & ... & 1\\ ... & ... & ... & ... & 1 &2 \end{array} \right) $$
e.g. for the main diagonal = 2, the sub- and superdiagonal = 1 .
Show with Induction that $\det(A) = n + 1$.
My solution approach: Laplace Expansion starting with the 2 in the bottom right corner $(a_{n+1,n+1})$. But how can I tell wether its positive or negative? After that I'm stuck with the 1 $(a_{n,n+1})$(the sub matrix matrix becomes ugly and I get a recursively solution). How can I formalize this in a proper manner?