How to find
$$\lim _{x\rightarrow \infty }\left[ \sqrt [6] {x^{6}+x^{5}}-\sqrt [6] {x^{6}-x^{5}}\right]\;?$$
How to find
$$\lim _{x\rightarrow \infty }\left[ \sqrt [6] {x^{6}+x^{5}}-\sqrt [6] {x^{6}-x^{5}}\right]\;?$$
$$(x^6+x^5)-(x^6-x^5) = \left [(x^6+x^5)^{1/6} - (x^6-x^5)^{1/6} \right ] \times \\\left [(x^6+x^5)^{5/6} + (x^6+x^5)^{4/6} (x^6-x^5)^{1/6}+ (x^6+x^5)^{3/6} (x^6-x^5)^{2/6}+ (x^6+x^5)^{2/6} (x^6-x^5)^{3/6}+ (x^6+x^5)^{1/6} (x^6-x^5)^{4/6}+ (x^6-x^5)^{5/6} \right ] $$
so as $x \to \infty$, we have
$$(x^6+x^5)^{1/6} - (x^6-x^5)^{1/6} \sim \frac{2 x^5}{6 (x^6)^{5/6}} = \frac13$$
It may be simpler to manage if we rewrite it as $xA-xB$, where $A=\sqrt[6]{1+1/x}$ and $B=\sqrt[6]{1-1/x}$. Then \begin{align} xA-xB&=x\frac{(A-B)(A^5+A^4B+A^3B^2+A^2B^3+AB^4+B^5)}{A^5+A^4B+A^3B^2+A^2B^3+AB^4+B^5}\\[2ex] &=x\frac{A^6-B^6}{A^5+A^4B+A^3B^2+A^2B^3+AB^4+B^5}\\[2ex] &=x\left(1+\frac{1}{x}-1+\frac{1}{x}\right) \frac{1}{A^5+A^4B+A^3B^2+A^2B^3+AB^4+B^5}\\[2ex] &=\frac{2}{A^5+A^4B+A^3B^2+A^2B^3+AB^4+B^5} \end{align} Computing the limit at the denominator is easy, because $$ \lim_{x\to\infty}A=1=\lim_{x\to\infty}B. $$
Note: it should more properly be $A(x)$ and $B(x)$ rather than $A$ and $B$, but the abbreviated form saves space.