$\text{Here is a question that I have been given, }$ $\lim_{x\to a}f(x)=A \iff $for each $c\in\mathbb R,\lim_{x\to a-c}f(x+c)=A$.
For this question the proof follows:
$\text{ Proof: Assume } \lim_{\theta\to a}f(x)=A; \ \\\forall\epsilon\gt0,\exists\delta\gt0,\forall{\theta}\in\mathbb R, 0\lt | \theta-a| \lt\delta\implies\ |f(x)-A|\lt\epsilon.\\ \text{Given }\epsilon\gt0, \\\text{If$\;$ } 0\lt\; |\theta-(a-c)| \lt\ \delta, \text{choose$\;$ } \theta=x-c,$ $ $\begin{equation} \begin{split} \text{Then$\;$} 0\lt\; |\theta-(a-c)| \lt\ \delta, & = |\theta-(a-c)| \lt\ \delta \\ & =|(x-c)-(a-c)| \lt\ \delta \\ & =|x-a| \lt\ \delta\\ & \implies\ |f(x)-A|\lt\epsilon\\&\implies\lim_{\theta\to a-c}f(x+c)=A \end{split} \end{equation}
$\text{$\therefore$ }$ $\lim_{x\to a}f(x)=A \iff $for each $c\in\mathbb R,\lim_{x\to a-c}f(x+c)=A$.
Prove or disprove: Now this one I have tried similar method's with no success.I can't figure what $\theta$ should be in this example.
$\lim_{x\to a}f(x)=A \iff $for each $c\neq0,\lim_{x\to a/c}f(cx)=A$.