2

I got this problem in my math.

Evaluate $$\lim_{x\rightarrow 0} {\frac{(1+x)^{\frac{1}{x}}-e}{x}}$$

I tried applying the L'Hospital rule, to get $$\lim_{x\rightarrow 0} (1+x)^{\frac{1}{x}}\frac{1}{x^2}(\frac{x}{1+x}-ln(1+x))$$ I don't know how to proceed after this.

GTX OC
  • 1,569
  • 2
  • 12
  • 19

2 Answers2

5

Hint: Use $$\lim_{x\rightarrow 0} \frac{(1+x)^{\frac{1}{x}}-e}{x}=\lim_{x\rightarrow 0} \frac{e^{\ln{(1+x)^{\frac{1}{x}}}}-e}{x}=\lim_{x\rightarrow 0} \frac{e^{\frac{\ln{(1+x)}}{x}}-e}{x}$$

meta_warrior
  • 3,288
  • 18
  • 34
0

You can proceed as follows $$\lim_{x\to 0}(1+x)^{1/x}\frac{\frac{x}{1+x}-\ln(1+x)}{x^2}$$ $$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{\frac{x}{1+x}-\ln(1+x)}{x^2}$$

apply L'Hospital's rule for $\frac00$ form of second limit as follows $$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{\frac{d}{dx}\frac{x}{1+x}-\frac{d}{dx}\ln(1+x)}{\frac{d}{dx}x^2}$$

$$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{\frac{1}{(1+x)^2}-\frac{1}{(1+x)}}{2x}$$ $$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{-x}{2x(x+1)^2}$$ $$=-\frac12\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{1}{(x+1)^2}$$ $$=-\frac12(e)\cdot (1)$$ $$=-\frac e2$$