You can proceed as follows
$$\lim_{x\to 0}(1+x)^{1/x}\frac{\frac{x}{1+x}-\ln(1+x)}{x^2}$$
$$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{\frac{x}{1+x}-\ln(1+x)}{x^2}$$
apply L'Hospital's rule for $\frac00$ form of second limit as follows
$$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{\frac{d}{dx}\frac{x}{1+x}-\frac{d}{dx}\ln(1+x)}{\frac{d}{dx}x^2}$$
$$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{\frac{1}{(1+x)^2}-\frac{1}{(1+x)}}{2x}$$
$$=\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{-x}{2x(x+1)^2}$$
$$=-\frac12\lim_{x\to 0}(1+x)^{1/x}\cdot \lim_{x\to 0}\frac{1}{(x+1)^2}$$
$$=-\frac12(e)\cdot (1)$$
$$=-\frac e2$$