Let us answer
Also regardless of this question I think that convergence relative to $d$ is equivalent to convergence in measure relative to $\mu$ is that true?
first. Yes, that is true.
Let $f_n \to f$ in measure. Let $\varepsilon > 0$ be arbitrary. By the convergence in measure, there is an $N$ such that $\mu(\{ x: \lvert f(x) - f_n(x)\rvert > \varepsilon/2\}) < \varepsilon/2$ for all $n \geqslant N$. But then we have
$$d(f,f_n) \leqslant \frac{\varepsilon}{2} + \mu\left(\left\lbrace x : \lvert f(x) - f_n(x)\rvert > \frac{\varepsilon}{2}\right\rbrace\right) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
for $n \geqslant N$. So convergence in measure implies $d$-convergence. Conversely, let $d(f,f_n)\to 0$, and let $\varepsilon > 0$ be arbitrary. We need to show that $\mu(\{ x : \lvert f(x) - f_n(x)\rvert \geqslant \varepsilon\}) \to 0$. Let $\delta > 0$ be arbitrary, subject to the restriction $\delta < \varepsilon$. Since $d(f,f_n) \to 0$, there is an $N$ with $d(f,f_n) < \delta/2$ for $n \geqslant N$. By the definition of $\inf$, there is then for each $n \geqslant N$ an $a_n > 0$ with
$$a_n + \mu(\{ x : \lvert f(x) - f_n(x)\rvert > a_n\}) < \delta.$$
But then we have $a_n < \delta$, and $\mu(\{ x : \lvert f(x) - f_n(x)\rvert > a_n\}) < \delta$, and since $a_n < \delta < \varepsilon$, that implies $\mu(\{ x : \lvert f(x) - f_n(x)\rvert \geqslant \varepsilon\}) < \delta$. That holds for all $n \geqslant N$, hence $f_n \to f$ in measure.
Regarding the inequality
$$d(\alpha f,\alpha g) \leqslant \max \{1,\lvert\alpha\rvert\}\cdot d(f,g),$$
the case $\alpha = 0$ is clear ($d(0,0) = 0$), and since multiplication by $-1$ leaves the absolute modulus unchanged, the case for negative $\alpha$ follows from that for positive $\alpha$.
Let first $0 < \alpha \leqslant 1$. Then
$$\begin{align}
d(\alpha f,\alpha g) &= \inf_{a > 0} \left(a + \mu(\{ x : \lvert \alpha f(x) - \alpha g(x)\rvert > a\}) \right)\\
&= \inf_{a>0} \left(a + \mu(\{ x : \lvert f(x) - g(x)\rvert > a/\alpha\right)\\
&= \inf_{b > 0} \left(\alpha b + \mu(\{x : \lvert f(x) - g(x)\rvert > b\})\right)\\
&\leqslant \inf_{b > 0} \left(b + \mu(\{x : \lvert f(x) - g(x)\rvert > b\})\right)\\
&= d(f,g).
\end{align}$$
For $\alpha > 1$, the computation is almost the same, only in the end we don't eliminate $\alpha$ and instead multiply the measure with $\alpha$,
$$\begin{align}
d(\alpha f, \alpha g) &= \dotsb\\
&= \inf_{b > 0} \left(\alpha b + \mu(\{x : \lvert f(x) - g(x)\rvert > b\})\right)\\
&\leqslant \inf_{b > 0} \left(\alpha b + \alpha\mu(\{x : \lvert f(x) - g(x)\rvert > b\})\right)\\
&= \alpha d(f,g).
\end{align}$$