Proof: Consider the quadratic equation $x^2+x+1=0$. Then, we can see that $x^2=−x−1$. Assuming that $x$ is not zero (which it clearly isn't, from the equation) we can divide by $x$ to give $$x=−1−\frac{1}{x}$$ Substitute this back into the $x$ term in the middle of the original equation, so $$x^2+(−1−\frac{1}{x})+1=0$$ This reduces to $$x^2=\frac{1}{x}$$ So, $x^3=1$, so $x=1$ is the solution. Substituting back into the equation for $x$ gives $1^2+1+1=0$
Therefore, $3=0$.
What happened?