3

I have to show that

$\lim_{n\to\infty} \sqrt{n}(\sqrt[n]{n}-1)=0$

We proofed that

$\lim_{n\to\infty} \sqrt[n]{n}=1$

My problem is, that I do not know how to solve that.

That $\lim_{n\to\infty}(\sqrt[n]{n}-1)=0$ is clear. But $\lim_{n\to\infty} \sqrt{n}$ is not bounded.

So I can not simply calculate:

$\lim_{n\to\infty}\sqrt{n}\cdot \lim_{n\to\infty}(\sqrt[n]{n}-1)$

right?

I would be thankfull for every hint. :-)

1 Answers1

2

for $n>1$ we have that $\sqrt[n] {n}=1+δ_n$. Then $δ_n>0$ and we have that $n=(1+δ_n)^n\geq \frac { n(n-1)(n-2)δ_n^3}{6}$(Newton's binomial)$<=>δ_n^3\leq \frac {6}{(n-1)(n-2)}<=> n^{3/2}δ_n^3\leq \frac {n^{3/2}6}{(n-1)(n-2)}$
($\frac {n^{3/2}6}{(n-1)(n-2)}\to 0$)and thus $ n^{3/2}δ_n^3\to 0$ for $n\to \infty$. This means that $n^{3/2}(\sqrt[n] {n}-1)^3\to 0$ or $(\sqrt n (\sqrt[n] {n}-1))^3\to 0$ or $\sqrt n (\sqrt[n] {n}-1)\to 0$ for $n\to \infty$

Haha
  • 5,648