$\displaystyle \int\frac{1}{(x^3+1)^2} \mathrm dx$
$\bf{My\; Try}::$ Using Integration by parts
Let $\displaystyle I = \int\frac{1}{(x^3+1)}\cdot 1\; dx = \frac{1}{(x^3+1)}\cdot x + \int\frac{3x^2\cdot x}{(x^3+1)^2}dx$
$\displaystyle I = \frac{1}{(x^3+1)}\cdot x + 3\int\frac{(x^3+1)-1}{(x^3+1)^2}dx$
$\displaystyle I = \frac{1}{(x^3+1)}\cdot x+3\int\frac{1}{x^3+1}dx-3\int\frac{1}{(x^3+1)^2}dx$
$\displaystyle I = \frac{1}{(x^3+1)}\cdot x+3I-3\int\frac{1}{(x^3+1)^2}dx$
$\displaystyle \int\frac{1}{(x^3+1)^2}dx = \frac{x}{3(x^3+1)}+\frac{2}{3}\int\frac{1}{x^3+1}dx$
Now Help Required
Thanks