You can use a semicircle in the upper half plane in the complex plane. That is, consider
$$\oint_C dz \frac{e^{n z}}{1+e^z}$$
where $C$ is the semicircle of radius $R$. Then the contour integral is equal to
$$\int_{-R}^R dx \frac{e^{n x}}{1+e^x} + i R \int_0^{\pi} d\theta \, e^{i \theta} \frac{e^{n R \cos{\theta}} e^{i n R \sin{\theta}}}{1+e^{R \cos{\theta}} e^{i R \sin{\theta}}}$$
As $R \to \infty$, the magnitude of the second integral vanishes by Jordan's Lemma because $n \in (0,1)$. By the residue theorem, the contour integral is also equal to $i 2 \pi$ times the sum of the residues at the poles $z_k = i (2 k+1) \pi$ for $k \in \{0,1,2,\ldots\}$. Thus,
$$\int_{-\infty}^{\infty} dx \frac{e^{n x}}{1+e^x} = -i 2 \pi \sum_{k=0}^{\infty} e^{i (2 k+1) \pi n} = -i 2 \pi \frac{e^{i \pi n}}{1-e^{i 2 \pi n}} = \frac{\pi}{\sin{\pi n}}$$