I played around a little and noticed quickly that $$\displaystyle 1+\frac{1}{2}sech(x)=\frac{e^{2x}+x+1}{e^{2x}+1}$$
By noting the factorization $$\displaystyle \frac{1-x^{3}}{1-x}\cdot \frac{1-x^{2}}{1-x^{4}}=\frac{x^{2}+x+1}{x^{2}+1}$$
By letting $\displaystyle x\to e^{-x}$, we can break these up somewhat and write $$\displaystyle \frac{e^{2x}+e^{x}+1}{e^{2x}+1}=\frac{1-e^{-3x}}{1-e^{-x}}\cdot \frac{1-e^{-2x}}{1-e^{-4x}}$$
So, we can write $$\displaystyle log(x)\left[log\left(\frac{1-e^{-3x}}{1-e^{-x}}\right)+log\left(\frac{1-e^{-2x}}{1-e^{-4x}}\right)\right]$$
$$\displaystyle log(x)\left[log(1-e^{-3x})-log(1-e^{-x})+log(1-e^{-2x})-log(1-e^{-4x})\right]dx$$
Now, is there some sort of general form for something like $$\displaystyle \int_{0}^{\infty}log(x)log(1-e^{-nx})dx$$?.
If we use the series for $log(1+u)$, we get $$\displaystyle \int_{0}^{\infty}log(x)\sum_{k=1}^{\infty}\frac{(-1)^{k}e^{-nkx}}{k}dx$$
Now, it is beginning to look like the Gamma derivative $$\displaystyle \int_{0}^{\infty}x^{a-1}log(x)e^{-x}dx=\Gamma'(a)$$
I have it, I just need to put it together. I managed to derive the formula I have above.
One can easily evaluate $\displaystyle \int_{0}^{\infty}\frac{tlog(t)}{e^{t}-1}dt$ by using the identity
$$\displaystyle \int_{0}^{\infty}\frac{t^{s-1}}{e^{t}-1}dt=\Gamma(s)\zeta(s)$$ and diffing. Of course, you knew that.
Doing so, leads to the above needed integral and we get $$\displaystyle \int_{0}^{\infty}\frac{t^{s-1}log(t)}{e^{t}-1}dt=\Gamma(s)\zeta'(s)+\zeta(s)\Gamma'(s)$$
Let $s = 2$:
$$\displaystyle \int_{0}^{\infty}\frac{tlog(t)}{e^{t}-1}dt=\zeta'(2)+\frac{\pi^{2}}{6}(1-\gamma)$$
Our integral is $$\displaystyle \int_{0}^{\infty}log(x)log(1-e^{-nx})dx$$
Let $\displaystyle t=nx, \;\ dx=\frac{1}{n}dt$
$$\displaystyle \frac{1}{n}\int_{0}^{\infty}log(t)log(1-e^{-t})dt-\underbrace{\frac{1}{n}log(n)\int_{0}^{\infty}log(1-e^{-t})dt}_{\frac{1}{n}log(n)\frac{\pi^{2}}{6}}$$
Now, use parts: $$\displaystyle u=log(1-e^{-t}), \;\ dv=log(t), \;\ du=\frac{1}{e^{t}-1}dt, \;\ v=tlog(t)-t$$
$$\displaystyle \underbrace{\frac{1}{n}\cdot (tlog(t)-t)log(1-e^{-t})|_{0}^{\infty}}_{\text{0}}-\frac{1}{n}\int_{0}^{\infty}\frac{tlog(t)-t}{e^{t}-1}dt-\frac{1}{n}log(n)\frac{\pi^{2}}{6}$$
$$\displaystyle \frac{-1}{n}\int_{0}^{\infty}\frac{tlog(t)}{e^{t}-1}dt+\underbrace{\frac{1}{n}\int_{0}^{\infty}\frac{t}{e^{t}-1}dt}_{\frac{\pi^{2}}{6n}}-\frac{1}{n}log(n)\frac{\pi^{2}}{6}$$
$$\displaystyle \frac{-1}{n}\left[\zeta'(2)+\frac{\pi^{2}}{6}(1-\gamma)\right]+\frac{\pi^{2}}{6n}-\frac{\pi^{2}}{6n}log(n)$$
$$\displaystyle =\frac{\pi^{2}(\gamma-log(n))-6\zeta'(2)}{6n}$$
If one prefers in terms of log(A), then use the identity: $$\displaystyle \zeta'(2)=\frac{\pi^{2}}{6}\gamma+\frac{\pi^{2}}{6}log(2\pi)-2\pi^{2}log(A)$$