As per the solution I derived here:
\begin{align}
I(x,a,k,n,m) &=\int_0^x \frac{t^k}{\left(t^n + a\right)^m}\:dt\\
& = \frac{1}{n}a^{\frac{k + 1}{n} - m} \left[B\left(m - \frac{k + 1}{n}, \frac{k + 1}{n}\right) - B\left(m - \frac{k + 1}{n}, \frac{k + 1}{n}, \frac{1}{1 + ax^n} \right)\right]
\end{align}
We position your integral as:
\begin{align}
I &= \int \frac{x^2 - 1}{\sqrt{x^4 + 1}}\:dx = \int_{0}^{x} \frac{t^2}{\sqrt{t^4 + 1}}\:dt = \int_{0}^{x} \frac{t^2 - 1}{\sqrt{t^4 + 1}}\:dt - \int_{0}^{x} \frac{1}{\sqrt{t^4 + 1}}\:dt \\
&= I\left(x,1,2,4, \frac{1}{2}\right) - I\left(x,1,0,4, \frac{1}{2}\right) \\
&= \frac{1}{4}1^{\frac{2 + 1}{4} - \frac{1}{2}} \left[B\left(\frac{1}{2} - \frac{2 + 1}{4}, \frac{2 + 1}{4}\right) - B\left(\frac{1}{2} - \frac{2 + 1}{4}, \frac{2 + 1}{4}, \frac{1}{1 + 1\cdot x^4} \right)\right] - \frac{1}{4}1^{\frac{0 + 1}{4} - \frac{1}{2}} \left[B\left(\frac{1}{2} - \frac{0 + 1}{4}, \frac{0 + 1}{4}\right) - B\left(\frac{1}{2} - \frac{0 + 1}{4}, \frac{0 + 1}{4}, \frac{1}{1 + 1\cdot x^4} \right)\right] \\
&= \frac{1}{4}\left[B\left(-\frac{1}{4}, \frac{3}{4}\right) - B\left(-\frac{1}{4}, \frac{3}{4}, \frac{1}{1 + x^4}\right) \right] - \frac{1}{4}\left[B\left(\frac{1}{4}, \frac{1}{4}\right) - B\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{1 + x^4}\right) \right]
\end{align}
Using the relationship between the Beta and Gamma Functions, we have:
\begin{align}
B\left(-\frac{1}{4}, \frac{3}{4}\right) &=\frac{\Gamma\left(-\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(-\frac{1}{4} + \frac{3}{4}\right)} & B\left(\frac{1}{4}, \frac{1}{4}\right)&=\frac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{1}{4} + \frac{1}{4}\right)} \\
&= \frac{\Gamma\left(-\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{2}\right)} & &= \frac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{2} \right)} \\
&= \frac{\Gamma\left(-\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\sqrt{\pi}} & &= \frac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\sqrt{\pi}}
\end{align}
Thus:
\begin{align}
I &= \frac{1}{4}\left[B\left(-\frac{1}{4}, \frac{3}{4}\right) - B\left(-\frac{1}{4}, \frac{3}{4}, \frac{1}{1 + x^4}\right) \right] - \frac{1}{4}\left[B\left(\frac{1}{4}, \frac{1}{4}\right) - B\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{1 + x^4}\right) \right] \\
&= \frac{1}{4}\left[B\left(-\frac{1}{4}, \frac{3}{4}\right) - B\left(\frac{1}{4}, \frac{1}{4}\right) \right] + \frac{1}{4}\left[B\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{1 + x^4}\right) - B\left(-\frac{1}{4}, \frac{3}{4}, \frac{1}{1 + x^4}\right) \right] \\
&= \frac{\Gamma\left(\frac{3}{4}\right)}{4\sqrt{\pi}}\left[ \Gamma\left(-\frac{1}{4}\right) - \Gamma\left(\frac{1}{4}\right)\right]+ \frac{1}{4}\left[B\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{1 + x^4}\right) - B\left(-\frac{1}{4}, \frac{3}{4}, \frac{1}{1 + x^4}\right) \right]
\end{align}