I am stuck on the following problem:
I have to determine the sum of the series $$\sum_{n=1}^{\infty}\frac{n+1}{2^n}$$
My Attempt: $$\sum_{n=0}^{\infty}\frac{n+1}{2^n}=\sum_{n=0}^{\infty}\frac{1}{2^n}+\sum_{n=0}^{\infty}\frac{n}{2^n}=\frac{1}{1-\frac12}+\sum_{n=0}^{\infty}\frac{n}{2^n}=2+\sum_{n=0}^{\infty}\frac{n}{2^n}$$.
So,I am stuck on determining the value of $\,\,\sum_{n=0}^{\infty}\frac{n}{2^n}$.
Can someone point me in the right direction? Thanks in advance for your time.