-2

Prove that: if $x_n \gt 0\forall n\in \mathbb N$ and if $\lim_{n\rightarrow \infty}\frac{x_{n +1}}{x_n} \lt 1$ then $\lim_{n\to \infty}x_n =0$ I don't know how to start, please help me.

abiessu
  • 8,115

3 Answers3

0

Hint. Let $L=\lim x_{n+1}/x_n$. By definition of limit, there is $N$ such that $n>N$ implies $|x_{n+1}/x_n -L|<(1-L)/2$. So if $n>N$ then $x_{n+1}/x_n<(1+L)/2$.

Hanul Jeon
  • 27,376
0

W.l.o.g. by ignoring the first few terms we have $\frac{x_{n+1}}{x_n} \le a < 1$ for all $n$.

Then $x_{n+1} \le a^n x_1 \rightarrow 0$.

Deven Ware
  • 7,076
0

The exercise is easily solved with the help of infinite series:

$$\text{The series}\;\;\sum_{n=1}^\infty x_n\;\;\text{is a positive one}$$

and we're given that the ratio test renders the series convergent, so it must be

$$\lim_{n\to\infty} x_n=0$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287