6

I'm trying to find the following limit:

$$\lim_{x\rightarrow 0} \frac{\cos x - 1}{x}$$

I tried to use squeeze theorem but it's not making much sense. I did the following:

$$\begin{align} &\lim_{x\rightarrow 0} \frac{\cos x - 1}{x} \\ -1 \le &\lim_{x\rightarrow 0} (\cos x)(x^{-1}) \le 1 \\ \lim_{x\rightarrow 0} -x^{-1} \le &\lim_{x\rightarrow 0} \cos x \le \lim_{x\rightarrow 0} x^{-1} \quad \text{*} \end{align}$$

The last line is where I'm confused. I don't think I'm doing squeeze theorem correctly. I'm guessing you have to manipulate $\cos x - 1$ somehow. Please provide some hints.

Thanks a bunch!

P.S You cannot use L'Hopital.

Jeel Shah
  • 9,306

6 Answers6

3

Hint 1: $$\cos x -1 = -2\sin^2 \dfrac{x}2$$ Hint 2: $$\dfrac{\cos x - 1}{x} = \dfrac{(\cos x - 1)(\cos x + 1)}{x(\cos x + 1)} = -\dfrac{\sin^2 x}{x^2} \dfrac{x}{1+\cos x}.$$

njguliyev
  • 14,473
  • 1
  • 26
  • 43
2

If you know that $\sin \theta \lt \theta$ when $\theta\gt0$, then you can argue that

$$0\lt\left| {1-\cos x\over x}\right|\lt\left|{1-\cos^2x\over x}\right|=\left|{\sin^2x\over x}\right|\lt \left|\sin x\right|$$

at which point the Squeeze Theorem takes over. If you need to prove the inequality $\sin\theta\lt\theta$, note that ${1\over2}\sin\theta$ (for small $\theta$, at least) is the area of the triangle inside the unit circle with vertices at the origin, $(1,0)$, and $(\cos\theta,\sin\theta)$, whereas ${1\over2}\theta$ is the area of the sector containing the triangle. (Alternatively, note that $\sin\theta$, being the vertical distance from $(\cos\theta,\sin\theta)$ to the $x$-axis, is less than the distance from $(\cos\theta,\sin\theta)$ to $(1,0)$, which is less than the arc length connecting those two points, namely $\theta$.)

Barry Cipra
  • 79,832
2

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\dd}{{\rm d}}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\ic}{{\rm i}}% \newcommand{\imp}{\Longrightarrow}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert #1 \right\vert}% \newcommand{\yy}{\Longleftrightarrow}$

By Mean Value Theorem: $$ \verts{\cos\pars{x} - 1 \over x} = \verts{\sin\pars{\xi}} \quad\mbox{where}\quad \left\vert% \begin{array}{lcl} \quad 0 < \xi < x & \mbox{if} & x > 0 \\ \mbox{or}&& \\ \quad x < \xi < 0 & \mbox{if} & x < 0 \end{array}\right. $$

Now, use 'Sandwich Theorem'.

Felix Marin
  • 89,464
0

As an alternative

$$\frac{\cos x - 1}{x}=\frac {\sin x}x\frac{\cos x - 1}{\sin x}$$

with $\frac {\sin x}x\to 1 $ and by tangent half-angle or double angle identities $$\frac{\cos x - 1}{\sin x}=-\tan \frac x 2 \to 0$$

user
  • 154,566
0

Let $f(x) = \cos(x)$, then $\lim_{x \rightarrow 0} \frac{\cos x - 1}{x} = f'(0) = -\sin(0) = 0$

Arthur
  • 5,524
-1

It is sufficient to use the asymptotic development of $\cos x$ around $0$, namely

$$\cos x = 1 - \frac{x^2}{2} + o(x^3).$$

Lord_Farin
  • 17,743
Rodney Coleman
  • 742
  • 3
  • 8