Using $e^{xi}=\cos x+i\sin x$, we can easily derive a canonical form for $\sin(ax)$, for $a\in\mathbb{N}$.
For example, $e^{3xi}=(\cos x+i\sin x)^3=\cos 3x+i\sin 3x$. Equating the imaginary parts of each expression, we obtain $$3\cos^2x \sin x-\sin^3x=\sin 3x$$ If we reuse this technique for 5, $e^{5xi}=(\cos x+i\sin x)^5=\cos 5x+i\sin 5x$. Equating the imaginary parts again,
$$ 5\cos^4x\sin x-10\cos^2x\sin^3x+\sin^5x=\sin 5x $$
So, your question reduces to
$$ \begin{align}
\sin x+3\cos^2x \sin x-\sin^3x+5\cos^4x\sin x-10\cos^2x\sin^3x+\sin^5x&=0 \\
\sin x \left(1+3(1-\sin^2x)-\sin^2x+5(1-\sin^2x)^2-10\sin^2x(1-\sin^2x)+\sin^4x\right)&=0 \\
\sin x(9-24\sin^2x+16\sin^4x)&=0
\end{align}$$
Now, we have $\sin x=0$ or $9-24\sin^2x+16\sin^4x=0$. Using the quadratic formula,
$$ \sin^2x=\frac{24\pm\sqrt{24^2-4\cdot9\cdot16}}{32}=\frac{3}{4} $$
So your solutions are $\sin x=0,\ \pm\frac{\sqrt{3}}{2}$, or when $x$ is an integer multiple of $\frac{\pi}{3}$