$K$ is field. $a_1$,$a_2$ elements of $K$. Show that $(x_1-a_1,x_2-a_2)$ is a maximal ideal of $K[x_1,x_2]$.
$K[x_1,x_2]$ is UFD so if $K[x_1,x_2]/(x_1-a_1,x_2-a_2)$ is field then $(x_1-a_1,x_2-a_2)$ is maximal ideal.
If I can show that $K[x_1,x_2]/(x_1-a_1,x_2-a_2)$ isomorphic to $K$, we can verify that $(x_1-a_1,x_2-a_2)$ maximal ideal of $K[x_1,x_2]$.
thanks for helps and comments.