How do I evaluate this sum:
$$\sum_{n=1}^\infty{\frac{1}{n2^n}}$$
Another way is
$$\sum_{n=1}^\infty{\frac{1}{n2^n}}=\sum_{n=1}^\infty{\int_0^{1/2}x^{n-1}\,\mathrm{d}x=\int_0^{1/2}\sum_{n=1}^\infty x^{n-1}\,\mathrm{d}x=\int_0^{1/2}{\frac{1}{1-x}}}\,\mathrm{d}x=\ln{2}$$
Hint: Think of this as the result of plugging $x=\frac{1}{2}$ in to a power series.