let $a,b$ be t wo arbitrary numbers and for every $n \geq 1\in \mathbb{N}$ :
$$x_1=b$$
$$x_{n+1}=\dfrac12\left(x_n+\dfrac{a}{x_n} \right)$$
We want to prove that this sequence converges to $\sqrt{a}$ .
we have :
$$h+\dfrac{1}{h}\geq2 \ \ \ : \ \ \ \forall \ \ h>0$$
So :
$$x_{n+1}=\dfrac12\left(x_n+\dfrac{a}{x_n} \right)=\dfrac{\sqrt{a}}{2}\left(\dfrac{x_n}{\sqrt{a}}+\dfrac{\sqrt{a}}{x_n} \right)\geq \dfrac{\sqrt{a}}{2}\cdot2\geq2$$
$$x_n\geq2 \ \ \ : \ \ \ \forall \ \ n\geq2$$
Now :
$$\dfrac{x_{n+1}}{x_n}=\dfrac12\left(1+\dfrac{a}{x_n} \right)\leq\dfrac12\left(1+\dfrac{a}{(\sqrt{a})^2} \right)=1$$
Thus the sequence $(x_n)$ is decreasing and bounded below and thus it is convergent .
let $l:=\lim\limits_{n}x_n$ then we have :
$$\lim\limits_{n}x_{n+1}=\lim\limits_{n}\dfrac12\left(x_n+\dfrac{a}{x_n} \right)=\dfrac12\left(l+\dfrac{a}{l}\right) \Rightarrow \lim\limits_{n}x_{n}=\sqrt{a}$$