Given $\{x \mid x > 1\}$, how do I prove that any given $x$ and $x+1$ are coprime?
Asked
Active
Viewed 4,772 times
12
-
8$p \mid x,x+1 \Longrightarrow p \mid 1$. – njguliyev Nov 02 '13 at 17:35
3 Answers
37
If $y$ divides $x$ and $x+1$ then it divides $(x+1)-x=1$. Conclude.
-
1
-
9If $y$ divides $x$ and $x+1$ then there's $a$ and $b$ such that $x=ay$ and $x+1=by$ then $(x+1)-x=(b-a)y$ so... Do you understand? – Nov 02 '13 at 22:19
-
1
-
1
17
$\gcd(x,x+1)=\gcd(x,x+1-x)=\gcd(x,1)=1$.
Hence $x$ and $x+1$ are coprime.

meta_warrior
- 3,288
- 18
- 34
3
If $x$ is a multiple of $p$, then the next multiple of $p$ is $x+p$, but that's clearly larger than $x+1$.

Jack M
- 27,819
- 7
- 63
- 129
-
Or, $ $ mod $,p!:\ x\equiv 0,\Rightarrow, x+1\equiv 1\not\equiv 0\ $ (else $,p\mid 1-0)\ \ \ $ – Bill Dubuque May 31 '14 at 16:53