12

Given $\{x \mid x > 1\}$, how do I prove that any given $x$ and $x+1$ are coprime?

haunted85
  • 1,418

3 Answers3

37

If $y$ divides $x$ and $x+1$ then it divides $(x+1)-x=1$. Conclude.

17

$\gcd(x,x+1)=\gcd(x,x+1-x)=\gcd(x,1)=1$.

Hence $x$ and $x+1$ are coprime.

meta_warrior
  • 3,288
  • 18
  • 34
3

If $x$ is a multiple of $p$, then the next multiple of $p$ is $x+p$, but that's clearly larger than $x+1$.

Jack M
  • 27,819
  • 7
  • 63
  • 129