Find $\int_0^1 \mathrm{\frac{x-1}{ln(x)}}\,\mathrm{d}x$
I tryed this:
$\int_0^1 \mathrm{\frac{x-1}{ln(x)}} = \int_0^1 \mathrm{\frac{x}{ln(x)}} - \int_0^1 \mathrm{\frac{1}{ln(x)}}\,\mathrm{d}x$
To $\int_0^1 \mathrm{\frac{1}{ln(x)}}\,\mathrm{d}x$
Let $t=lnx $ then $\frac{dt}{dx}=\frac{1}{x}$ and $dx=e^tdt$
$\int \mathrm{\frac{1}{ln(x)}}\,\mathrm{d}x \equiv \int \mathrm{\frac{e^t}{t}}$$\mathrm{d}t$ and well
$e^t=\sum _{n=0}^\infty \frac{t^n}{n!}$
$\frac{e^t}{t}=\sum_{n=0}^\infty \frac{t^{n-1}}{n!}$
$\int \mathrm{\frac{e^t}{t}}\,\mathrm{d}t=\int \mathrm \sum_{n=0}^\infty{\frac{t^{n-1}}{n!}}\,\mathrm{d}t=\sum_{n=0}^\infty\frac{t^n}{n*(n)!}$
How can I solve $\int_0^1 \mathrm{\frac{x}{ln(x)}}$ ?
Thanks for your help :) have a nice day