Use the following lemma to prove that $A_4$ has no subgroup of order $6$:
Lemma: If $H\le G$ has index $2$, i.e. $[G:H]=2$, then for any $a\in G$ we have $a^2\in H$.
The $12$ elements of $A_4$ are $(1), (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134), (143)$, $(234)$, and $(243)$.