Unfortunately I have no clever ideas to evaluate your integral. Instead I will follow your suggested line of attack and write
$$\tanh^{-1} (x) = \frac{1}{2} \ln \left (\frac{1 + x}{1 - x} \right ).$$
Doing so the integral becomes
\begin{align*}
I &= \frac{1}{2} \int_0^1 \ln \left (\frac{1 + x}{1 - x} \right ) \frac{\ln x}{x(1 - x^2)} \, dx\\
&= \frac{1}{2} \int_0^1 \ln \left (\frac{1 - x^2}{(1 - x)^2} \right ) \frac{\ln x}{x(1 - x^2)} \, dx\\
&= \frac{1}{2} \int_0^1 \frac{\ln (1 - x^2) \ln x}{x(1 - x^2)} \, dx - \int_0^1 \frac{\ln (1 - x) \ln x}{x (1 - x^2)} \, dx\\
&= \frac{1}{2} I_1 - I_2.
\end{align*}
The integral $I_1$
Enforcing the substitution $x \mapsto \sqrt{x}$ gives
$$I_1 = \frac{1}{4} \int_0^1 \frac{\ln (1 - x) \ln x}{x(1 - x)} \, dx.$$
Making use of the generating function for the harmonic numbers $H_n$, namely
$$\sum_{n = 1}^\infty H_n x^n = - \frac{\ln (1 - x)}{1 - x},$$
we have
$$I_1 = -\frac{1}{4} \sum_{n = 1}^\infty \int_0^1 x^{n - 1} \ln x \, dx.$$
Noting that
$$\int_0^1 x^{n - 1} \ln x \, dx = -\frac{1}{n^2},$$
a result that can be established using integration by parts, the integral becomes
$$I_1 = \frac{1}{4} \sum_{n = 1}^\infty \frac{H_n}{n^2}.$$
The resulting sum, known as an Euler sum can be readily found (see here for example). Its value is
$$\sum_{n = 1}^\infty \frac{H_n}{n^2} = 2 \zeta (3).$$
Thus
$$I_1 = \int_0^1 \frac{\ln (1 - x^2) \ln x}{x(1 - x^2)} \, dx = \frac{1}{2} \zeta (3).$$
The integral $I_2$
From a partial fraction decomposition of
$$\frac{1}{x(1 - x^2)} = \frac{1}{x} + \frac{1}{2(1 - x)} + \frac{1}{2(1 + x)},$$
the integral for $I_2$ can be written as
\begin{align*}
I_2 &= \int_0^1 \frac{\ln (1 - x) \ln x}{x} \, dx + \frac{1}{2} \int_0^1 \frac{x \ln x \ln (1 - x)}{1 - x} \, dx + \frac{1}{2} \int_0^1 \frac{x \ln x \ln (1 - x)}{1 + x} \, dx\\
&= I_\alpha + \frac{1}{2} I_\beta + \frac{1}{2} I_\gamma.
\end{align*}
The first two integrals are relatively easy the find, the third is more difficult.
For the first
\begin{align*}
I_\alpha &= \int_0^1 \frac{\ln (1 - x) \ln x}{x} \, dx\\
&= -\text{Li}_2 (x) \ln x \Big{|}^1_0 + \int_0^1 \frac{\text{Li}_2 (x)}{x} \, dx\\
&= \int_0^1 \frac{\text{Li}_2 (x)}{x} \, dx\\
&= \text{Li}_3 (x) \Big{|}_0^1 = \text{Li}_3 (1) = \zeta (3).
\end{align*}
For the second
\begin{align*}
I_\beta &= \int_0^1 \frac{x \ln x \ln (1- x)}{1- x} \, dx,
\end{align*}
we again make use of the generating function for the harmonic numbers. Doing so we have
$$I_\beta = - \sum_{n = 1}^\infty H_n \int_0^1 x^{n + 1} \ln x \, dx.$$
By parts, it can be shown that
$$\int_0^1 x^{n + 1} \ln x \, dx = -\frac{1}{(n + 2)^2},$$
thus
$$I_\beta = \sum_{n = 1}^\infty \frac{H_n}{(n + 2)^2}.$$
To find the resulting sum we begin by shifting the summation index $n \mapsto n - 1$. Thus
$$I_\beta = \sum_{n = 2}^\infty \frac{H_{n - 1}}{(n + 1)^2}.$$
Now from properties for the harmonic numbers
$$H_n = H_{n - 1} + \frac{1}{n}. \tag1$$
Thus
\begin{align*}
I_\beta &= \sum_{n = 2}^\infty \frac{H_n}{(n + 1)^2} - \sum_{n = 2}^\infty \frac{1}{n(n + 1)^2}\\
&= \sum_{n = 1}^\infty \frac{H_n}{(n + 1)^2} - \sum_{n = 1}^\infty \frac{1}{n(n + 1)^2}.
\end{align*}
In the first sum, shifting the summation index again by $n \mapsto n - 1$ and applying property (1) resulting in
\begin{align*}
\sum_{n = 1}^\infty \frac{H_n}{(n + 1)^2} &= \sum_{n = 2}^\infty \frac{H_n}{n^2} - \sum_{n = 2}^\infty \frac{1}{n^3} = \sum_{n = 1}^\infty \frac{H_n}{n^2} - \sum_{n = 1}^\infty \frac{1}{n^3} = 2 \zeta (3) - \zeta (3) = \zeta (3).
\end{align*}
For the second sum, as
$$\frac{1}{n(n + 1)^2} = \frac{1}{n} - \frac{1}{n + 1} - \frac{1}{(n + 1)^2},$$
we have
\begin{align*}
\sum_{n = 1}^\infty \frac{1}{n(n + 1)^2} &= \sum_{n = 1}^\infty \left (\frac{1}{n} - \frac{1}{n + 1} \right ) - \sum_{n = 1}^\infty \frac{1}{(n + 1)^2}.
\end{align*}
The first sum telescopes to $1$. For the second sum, it is
$$\sum_{n = 1}^\infty \frac{1}{(n + 1)^2} = \sum_{n = 2}^\infty \frac{1}{n^2} = \sum_{n = 1}^\infty \frac{1}{n^2} - 1 = \zeta (2) - 1.$$
So
$$\sum_{n = 1}^\infty \frac{1}{n(n + 1)^2} = 1 - (\zeta (2) - 1) = 2 - \zeta (2),$$
giving
$$I_\beta = \zeta (3) - (2 - \zeta (2)) = \zeta (3) + \zeta (2) - 2.$$
The integral $I_\gamma$
Now for the difficult one. To evaluate it we will use double infinite sums. Since
$$\frac{\ln (1 - x)}{1 + x} = -\sum_{k = 0}^\infty \sum_{n = 0}^\infty \frac{(-1)^k}{n + 1} x ^{x + k + 1},$$
the integral can be rewritten as
$$I_\gamma = - \sum_{k = 0}^\infty \sum_{n = 0}^\infty \frac{(-1)^k}{n + 1} \int_0^1 x^{n + k + 2} \ln x \, dx.$$
As
$$\int_0^1 x^{n + k + 2} \ln x \, dx = - \frac{1}{(n + k + 3)^2},$$
we can write
$$I_\gamma = \sum_{k = 0}^\infty \sum_{n = 1}^\infty \frac{(-1)^k}{(n + 1)(n + k + 3)^2}.$$
By a partial fraction decomposition we have
$$\frac{1}{(n + 1)(n + k + 3)^2} = \frac{1}{(k + 2)^2(n + 1)} - \frac{1}{(k + 2)^2 (k + n + 3)} - \frac{1}{(k + 2)(k + n + 3)^2}.$$
Now for the inner infinite sum over $n$ we have
\begin{align*}
\sum_{n = 0}^\infty \frac{1}{(n + 1)(n + k + 3)^2} &= \sum_{n = 0}^\infty \left [\frac{1}{(k + 2)^2(n + 1)} - \frac{1}{(k + 2)^2 (k + n + 3)} - \frac{1}{(k + 2)(k + n + 3)^2} \right ]\\
&= \frac{1}{(k + 2)^2} \sum_{n = 1}^{k + 2} \frac{1}{n} - \frac{1}{k + 2} \sum_{n = k + 3}^\infty \frac{1}{n^2}\\
&= \frac{1}{(k + 2)^2} H_{k + 2} - \frac{1}{k + 2} \sum_{n = 1}^\infty \frac{1}{n^2} + \frac{1}{k + 2} \sum_{n = 1}^{k + 2} \frac{1}{n^2}\\
&= \frac{H_{k + 2}}{(k + 2)^2} - \frac{\zeta (2)}{k + 2} + \frac{H^{(2)}_{k + 2}}{k + 2}.
\end{align*}
Here $H^{(a)}_n$ denotes the Generalised Harmonic numbers.
Thus
$$I_\gamma = \sum_{k = 0}^\infty \frac{(-1)^k H_{k + 2}}{(k + 2)^2} - \zeta (2) \sum_{k = 0}^\infty \frac{(-1)^k}{k + 2} + \sum_{k = 0}^\infty \frac{(-1)^k H^{(2)}_{k + 2}}{k + 2}.$$
For the first sum, let $k \mapsto k - 2$, then
$$S_1 = \sum_{k = 2}^\infty \frac{(-1)^k H_k}{k^2} = 1 + \sum_{k = 1}^\infty \frac{(-1)^k H_k}{k^2} = 1 + A(1,2).$$
Here
$$A(p,q) = \sum_{k = 1}^\infty \frac{(-1)^{k + 1} H^{(p)}_k}{k^q},$$
correspond to the alternating Euler sums whose first few values can be found here. Since $A(1,2) = \frac{5}{8} \zeta (3)$ we have
$$S_1 = 1 - \frac{5}{8} \zeta (3).$$
For the second sum
$$S_2 = \sum_{k = 0}^\infty \frac{(-1)^k}{k + 2} = -\sum_{k = 1}^\infty \frac{(-1)^{k + 1}}{k} + 1 = -\ln (2) + 1.$$
For the third sum, let $k \mapsto k - 2$, then
$$S_3 = \sum_{k = 2}^\infty \frac{(-1)^k H^{(2)}_k}{k} = 1 - \sum_{k = 1}^\infty \frac{(-1)^{k + 1} H^{(2)}_k}{k} = 1 - A(2,1).$$
And as $A(2,1) = \zeta (3) - \frac{1}{2} \zeta (2) \ln (2)$, we have
$$S_3 = 1 + \frac{1}{2} \zeta (2) \ln (2) - \zeta (3).$$
So finally
\begin{align*}
I_\gamma &= \left (1 - \frac{5}{8} \zeta (3) \right ) - \zeta (2) \left (1 - \ln (2) \right ) + \left (1 + \frac{1}{2} \zeta (2) \ln (2) - \zeta (3) \right )\\
&= -\frac{13}{8} \zeta (3) + 2 - \zeta (2) + \frac{3}{2} \zeta (2) \ln (2).
\end{align*}
So on combining all the results found we have
\begin{align*}
I_2 &= I_\alpha + \frac{1}{2} I_\beta + \frac{1}{2} I_\gamma\\
&= \zeta (3) + \frac{1}{2} \left (\zeta (3) + \zeta (2) - 2 \right ) + \frac{1}{2} \left (-\frac{13}{8} \zeta (3) + 2 - \zeta (2) + \frac{3}{2} \zeta (2) \ln (2) \right )\\
&= \frac{11}{16} \zeta (3) + \frac{3}{4} \zeta (2) \ln (2).
\end{align*}
And
\begin{align*}
I &= \frac{1}{2} I_1 - I_2\\
&= \frac{1}{4} \zeta (3) - \left (\frac{11}{16} \zeta (3) + \frac{3}{4} \zeta (2) \ln (2) \right )\\
&= -\frac{7}{16} \zeta (3) - \frac{3}{4} \zeta (2) \ln (2),
\end{align*}
or
$$\int_0^1 \frac{\tanh^{-1} (x) \ln (x)}{x(1 - x^2)} \, dx = -\frac{7}{16} \zeta (3) - \frac{\pi^2}{8} \ln (2),$$
as required.