1

The random variable

$$ S^2=\sum_{i=1}^n \frac{(X_i- \overline X)^2}{(n-1)} $$

is called the sample variance.

A) Show that $ (n-1)S^2=\left[\sum_{i-1}^n ((X_i-\mu)^2 \right]-n(\overline X-\mu)^2 $

(Hint: Start with $(n-1)S^2=\sum_{i-1}^n ((X_i-\mu)+(\mu-\overline X))^2 $)

B) Use result from A) to show that $ E[S^2]=\sigma^2 $


answer for A)
Work: I used the hint to obtain $$ \sum_{i=1}^n [(X_i-\mu)^2+2[(X_i-\mu)(\mu-\overline X)]+(\mu-\overline X)^2] $$ $$ =\sum_{i=1}^n (X_i-\mu)^2+\sum_{i=1}^n2[(X_i-\mu)(\mu-\overline X)]+\sum_{i=1}^n(\mu-\overline X)^2 $$ $$ =\left[\sum_{i=1}^n (X_i-\mu)^2\right]+\left[2(\mu-\overline X)\sum_{i=1}^n(X_i-\mu)\right]+n(\mu-\overline X)^2 $$ $$ = \left[\sum_{i=1}^n (X_i-\mu)^2\right]+2(\mu-\overline X)(n\overline X-n \mu)+n(\mu-\overline X)^2 $$ $$ =\left[\sum_{i=1}^n (X_i-\mu)^2\right]-2(\overline X-\mu)n(\overline X-\mu)+[(-n)(\overline X-\mu)(-1)(\overline X-\mu)] $$ $$ =\left[\sum_{i=1}^n (X_i-\mu)^2\right]-2n(\overline X - \mu)^2+n(\overline X-\mu)^2 $$ $$ (n-1)S^2=\left[\sum_{i=1}^n (X_i-\mu)^2\right]-n(\overline X - \mu)^2,\; \text{as desired.} $$


Part B) Use result from A) to show that $ E[S^2]=\sigma^2 $

I don't even know where to begin.

allie
  • 443

1 Answers1

0

Hint: $E(.)$ is a linear operator. In other words: $E(a+b) = E(a) + E(b)$.

response
  • 5,071