3

I know the following:

$$\varphi(2n)=\varphi(2)\varphi(n)=\varphi(n)\iff(2,n)=1$$ And $$\varphi(3n)=\varphi(3)\varphi(n)=2\varphi(n)\iff(3,n)=1$$

But now I'm not sure what to do with this info.

Mirrana
  • 9,009

1 Answers1

1

Consider the following: \begin{align*} \varphi(2n)&=\begin{cases} \varphi(2)\varphi(n)=\varphi(n)&\text{if $(2,n)=1$}\\ \varphi(2)\varphi(n)\frac{2}{\varphi(2)}=2\varphi(n)&\text{if $(2,n)=2$} \end{cases} \end{align*} and \begin{align*} \varphi(3n)&=\begin{cases} \varphi(3)\varphi(n)=2\varphi(n)&\text{if $(3,n)=1$}\\ \varphi(3)\varphi(n)\frac{3}{\varphi(3)}=3\varphi(n)&\text{if $(3,n)=3$} \end{cases} \end{align*} The equality $\varphi(2n)=\varphi(3n)$ only holds when $(2,n)=2$ and $(3,n)=1$. Therefore, $\varphi(2n)=\varphi(3n)$ for all $n$ that have a prime factor of $2$ and that do not have a prime factor of 3... Or $\forall n,\ s.t\ 2\mid n,\ 3\nmid n$.

Mirrana
  • 9,009
  • I think $\phi(3n)=3\phi(n)$ when $(3,n)=3$. – lhf Oct 25 '13 at 02:35
  • @lhf I think you may be right, but I don't know how to show it... My math above used the assumption that if $(3,n)=3$, then $\varphi(3n)=\varphi(3^2n)=\varphi(3^2)\varphi(n)=3(3-1)\varphi(n)$... but now I see that I didn't factor the $3$ out of the $n$, so I should probably have $\varphi(n/3)$ instead... – Mirrana Oct 25 '13 at 03:08
  • 1
    See http://math.stackexchange.com/questions/521233/what-factor-has-to-be-applied-to-phiab-propto-phia-phib-for-non-coprime. – lhf Oct 25 '13 at 03:11
  • @lhf Updated the math – Mirrana Oct 25 '13 at 03:17