I know the following:
$$\varphi(2n)=\varphi(2)\varphi(n)=\varphi(n)\iff(2,n)=1$$ And $$\varphi(3n)=\varphi(3)\varphi(n)=2\varphi(n)\iff(3,n)=1$$
But now I'm not sure what to do with this info.
I know the following:
$$\varphi(2n)=\varphi(2)\varphi(n)=\varphi(n)\iff(2,n)=1$$ And $$\varphi(3n)=\varphi(3)\varphi(n)=2\varphi(n)\iff(3,n)=1$$
But now I'm not sure what to do with this info.
Consider the following: \begin{align*} \varphi(2n)&=\begin{cases} \varphi(2)\varphi(n)=\varphi(n)&\text{if $(2,n)=1$}\\ \varphi(2)\varphi(n)\frac{2}{\varphi(2)}=2\varphi(n)&\text{if $(2,n)=2$} \end{cases} \end{align*} and \begin{align*} \varphi(3n)&=\begin{cases} \varphi(3)\varphi(n)=2\varphi(n)&\text{if $(3,n)=1$}\\ \varphi(3)\varphi(n)\frac{3}{\varphi(3)}=3\varphi(n)&\text{if $(3,n)=3$} \end{cases} \end{align*} The equality $\varphi(2n)=\varphi(3n)$ only holds when $(2,n)=2$ and $(3,n)=1$. Therefore, $\varphi(2n)=\varphi(3n)$ for all $n$ that have a prime factor of $2$ and that do not have a prime factor of 3... Or $\forall n,\ s.t\ 2\mid n,\ 3\nmid n$.